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Characteristic features of symmetry breaking in two-component Bose-Einstein condensates
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We examine the stability properties of the ground state of two-component Bose-Einstein condensates as a
function of the interspecies interactions. A stability criterion is identified from the curvature matrix of the
Gross-Pitaevskii energy functional subject to the normalization conditions. By analyzing the stability signature,
the characteristic features of the spontaneous spatial symmetry breaking are verified in various types of traps.
The details of the differences between the continuous symmetry breaking and discrete symmetry breaking are
discussed.
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[. INTRODUCTION mizes the GPEF subject to constant particle number. The
specific symmetry-breaking states were obtained by impos-
Recently two-component Bose-Einstein condensatesig an additional symmetry constraints on the ground state
(2BEQ) have been realized by the systems of two differentwave function. After the determination of the stationary so-
spin states of Rb in a magnetic trep 2] and, subsequently, lutions of the GPEF, we investigated the stability properties
Na in an optical trag3]. Since then, a lot of theoretical of the stationary solutions by computing the eigenvalues of
works have focused on how the presence of the interspecig¢be curvature matrix of the GPEF subject to the normaliza-
interactions affects the stability of the ground state structuretion constraints. We found that, as crossing the instability
and the excitation spectra of 2BEC. Different from the casegoint, the lowest eigenvalue of the curvature matrix, which
of one-component BEC, 2BEC offers an opportunity to studycorresponds to our stability criterion, becomes negative for
a wide variety of interesting ground state structures such athe symmetry-preserving states making the excitation fre-
phase separation and spontaneous spatial symmetry breakiggency purely imaginary, whereas it remains at zero or posi-
due to an additional interspecies interaction. The phase septive for the symmetry-breaking states depending on the bro-
ration of 2BEC has been first addressed in the Thomas-Fernkien symmetry. In earlier works, the stability of the ground
approximation[4] and studied more accurately within the state of 2BEC had been examined by computing the Hartree-
Hartree-Fock theory5,6]. In these studies, the ground state Bogoliubov frequencief8] or by solving the time-dependent
of 2BEC has been assumed to retain the spherical trap synGGPEs under the modulation of the trEl2]. These stability
metry, so the phase separation proceeds with the forming afnhalyses can only tell whether the stationary solutions are
a central core dominated by one species with an outer shedtable or not with respect to the time evolution. However, our
of the second species. On the other hand, the symmetngtability criteria provide quantitative knowledge on the sta-
breaking phase separation of 2BEC, in which the groundility of the stationary solutions by identifying the saddle-
state does not possess the symmetry of the trap potential, hagss of the stationary points on the GPEF surface.
been recently demonstrated numerically by solving the The instabilities associated with the spontaneous spatial
coupled Gross-Pitaevskii equatio@6PES [7]. When the symmetry breaking can be classified according to the spatial
lowest excitation frequency becomes zero the symmetrysymmetry of the resulting ground state. In general, the
preserving ground state of 2BEC shows the onset of the inground state of 2BEC breaks a symmetry in the direction
stability and a subsequent transition to the symmetrycorresponding to the weakest trap frequef@ly However,
breaking statd8,9]. More recently, the effects of the trap the characteristic behaviors of the symmetry breaking show a
geometry and finite temperature on the symmetry breakingnarked difference depending on whether the broken symme-
were also investigated.0]. try is continuous or not. The invariance of the symmetry
Until now most theoretical works on the spontaneous spabreaking under some continuous group produces a nonlocal-
tial symmetry breaking had used the approach based on thgy in the critical solution set, which can be identified by the
coupled Gross-Pitaevskii equations obtained from the optidegeneracy of zero eigenvalue of the stability mafdig].
mum condition of the Gross-Pitaevskii energy functionalThese general behaviors accompanied with the instabilities
(GPEB [10,9]. However, it should be noted that the solu- in the symmetry breaking have not been studied in previous
tions of the GPEs do not always correspond to the localvorks. Our results show that the continuous symmetry
minimum of the GPEF since the set of solutions of thebreaking occurring in the radially symmetric trap or a pan-
coupled GPEs also includes maxima and saddle points of theakelike trap is always accompanied by the marginal stabil-
energy functional8]. Therefore, it is more natural to inves- ity, which implies the existence of an infinite number of de-
tigate the stability properties of the ground state of 2BECgenerate symmetry-breaking states. The marginal stability
starting from the Gross-Pitaevskii energy functional. In thiscan be noticed by occurrence of degenerate zero eigenvalues
paper, we obtained the stationary solutions of the GPEF bin the curvature matrix at the instability points. On the other
applying the gradient projection meth¢dll], which mini-  hand, the discrete symmetry breaking in the cigarlike trap
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proceeds by making the locally stable two degenerate states

. . 1 .2 111 2|2

that are mirror images of each other. E[chﬁ]:NlE enlCPH NuN, D €3lc2)?

In Sec. Il, the basic theory and detailed numerical meth-
ods are explained. We define a different stability criterion N g—nNzZ clelelelziiil
from computation of the local curvatures of the Gross- 2 1 a~pty-ssaBys
Pitaevskii energy functional at the stationary points. In Sec.
1, we present the numerical results of the symmetry break- “ g_ngz2 2220272222
ing in various types of traps with a discussion of character- m o N2 a”pryscapys

istic features of the continuous and discrete symmetry break-

ing. Finally, the conclusions and the limitation of our method 1.1.2 2-1192
are summarized in Sec. IV. + 91NNz CoCeiesZys, @

II. THEORY AND NUMERICAL COMPUTATION

We start by considering the Gross-Pitaevskii energy func?/nere hj¢.= €,$. and Zggyﬁzfdr‘ﬁ_loz‘ﬁjt%‘bl;%'_ The sta-
tional of 2BEC, tionary states of Eq(l) corresponding to optima of the
GPEF are obtained by minimizing E() subject to the con-
straints of constant particle humbers, i.e., by the condition
Gj(cl)==|c,|2>~1=0. We used the gradient projection
technique that minimize& iteratively along the gradient

E[\Ifl,’\lfz]: J’ dr( Nl’\I’Iﬁl\I]l—i_ )\mNz‘Ij; ﬁz’\ljz

11 922 i i i i
i —N§|‘1’1|4+7\m—N§|‘1’z|4 projected onto thg Ilpear sub;page deﬂned by the constraint
2 2 set[11]. The projection matrixP is defined as —u;®u,
—U,®Uy, Wherel is 2Ny sisX 2Ny asis identity matrix, and
+912N1N2|x1r1|2|\1f2|2>, ) u; andu, are normalized R, ,¢;s dimensional column vec-

tors spanning the linear constraints subspace identical to

1 T 2\T .
whereN; and ¥; are the number of atoms and the normal-(Ca-0) " and (0.cy) ', respectively. Herez means the

ized wave function ofth condensate, respectively. Hekg, ‘out;zr’(’j ?rodu;; of two vectors.hThle gradient projection
and\ , are the ratio of the mass and the radial frequency a %t N orqft_e j o convetr)ge t;. the lowest enhergy state. To
m, /m, and w, /w5, respectively. By scaling the length and Ind & Specilic symmetry-brea ng state, we have to impose
energy with respect to the harmonic unitslef VA/miw, an add|t|one_1|. symmetry constraint o . . e

. The stability of stationary states can be identified by ex-
and fwq, respectively, the one-body operators are_ . . . .

_ N amining the eigenvalues of the curvature matrix of the
iven by h;=—VZ2+(A2x?+A2y?+A27%)/2, where - o ; .
g y N x iyY TARZ)E W Gross-Pitaevskii energy functional. The curvature matrix is
Aza=A1alAmk,, (@=X,y,2), Aj, being the anisotropic pa- gptained by projecting the Hessian matrix of the GPEF on

rameter along the axia for the specieg. We approximate pe subspace defined by the constraint set, 2ol
the atomic interactions as the pseudopotentigy —PTHP. H=d2E/ac' acl

o 2 . : - Notice that the normalization
= 2mh“a;; Im;;, wheremy; is the reduced mass defined by constraintsG; restrict the fluctuations of!, around the sta-
1/m;;=1/m;+1/m;, andq;; is the swave scattering length

b h . di B i tionary points. The normal modes biP"®! are decomposed

_e‘tlween”t € s_p:lames /Ian J('j 31 ian;\e ;caln%,gﬂ into two subspaces. One subspace corresponds to the con-

=4man/ly, 92o=4mazll1, andgi,=(1+Aiy) T2/l straint space composed of andu,, and the other subspace
At zero temperature the condensate wave functiorjshof

) . _corresponds to the orthogonal subspace whose normal modes
component¥; obeys the time-dependent Gross-Pitaevskiiyre orthogonal to both, andus,. The onset of the instability

equations igW;/ot=6E/SW} . Various numerical tech- g the transition to the symmetry-breaking states occur
niques h_ave been applied to determine the stationary SOlYihen the lowest eigenvalue P in the orthogonal sub-
tions of time-dependent GPES5-17. Here we take a dif- 5506 hecomes zero. At the instability point, the direction of
ferent ap'proach by transforming the Hamlltonlan systems tne symmetry-breaking solution is determined uniquely by
the gradient systems whose dynamics is governed by thge eigenvector with zero eigenvalue. Our stability criterion
diffusion equations)V¥;/dr=— SE/oW =f[¥;], wherer  giso provides the degree of the stability of the stationary
is the imaginary timet. Thenf['¥;] can be considered as a so|utions by identifying a saddleness of the stationary point
force that is derived from the negative gradient of the potengp the GPEF surface. Indeed, we found that the symmetry-
tial function E[W,,W,] with respect to¥} . Thus the mini-  preserving and symmetry-breaking states correspond to 1
mizing process oft is equivalent to a process of finding saddle and 0 saddle, respectively, in the symmetry-breaking
stationary states o¥;(7) and the stability properties of the parameter regime. Heresaddle means a saddle point of the
stationary states are determined from the local curvatures @PEF surface, which hasiegative eigenvalues. The number
the GPEF subject to the normalization constraints. The conef degeneracy of eigenvalues, which become zero at the in-
densate wave functioW; are assumed to be real, since anystability point depends on the symmetry of the trap. It is
phase factor can be trivially eliminated. By expandMyg  threefold degenerate for a radially symmetric trap, and two-
with the harmonic oscillator basis 85 =Xc!,¢!,, the GPEF  fold degenerate for a pancakelike trap. Finally, for a cigarlike
reduces to a finite dimensional form as trap, it is nondegenerate.
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FIG. 1. The values of yproj, Ay, and wj Vs interspecies cou- 0.01
pling constanta;, in a radially symmetric trap. Symmetry- ’ 0
preserving branch and symmetry-breaking branch are abbreviated 4
by SP and SB, respectively.
Ill. RESULTS AND DISCUSSIONS -4
X
We first carried out calculations with the same parameter density 2o
set as used in the work of Pu and Bigelpi¥]| for compari- Vi
son. We assumed Rb as component 1 and Na as component 2 0.05
with intraspecies scattering lengths of 6 nm and 3 nm, re- 8'8‘3‘
spectively. The radial trap frequencies were takenawgs 0.02
=27X160 Hz andw,=27X310 Hz. In Fig. 1 the lowest 001
eigenvalue ofHP™!) (\proj) andH (M) for the case of a 0
radially symmetric trap were plotted for the symmetry- 4
preserving and symmetry-breaking solutions, respectively, as
a function of the interspecies scattering lengi for fixed -4
N;=N,=10°. The closed and open squares repreagato; X 2 4
corresponding to the symmetry-breaking states and 4
symmetry-preserving states, respectively. Notice thag;as FIG. 2. The spatial density profiles of the phase separated, but

crosses the instability pointag,=5.0), Ayperoj becomes symmetry-preserving state 2&0 plane Rb core with surrounding
negative for the symmetry-preserving states, whereas it reNa atoms(a), Na core with surrounding Rb atons). The spatial
mains at zero for the symmetry-breaking states. This showdensity profile of the symmetry-breaking state). Here, a;,

that the occurrence of the instability of the symmetry-=9.6 nm and the spatial coordinates are scaled by the harmonic
preserving state is always accompanied with the symmetryescillator lengthl ;.

breaking state that is marginally stable. If the symmetry

breaking is invariant under some continuous group, the critifime. On the other hand, for the symmetry-breaking solu-
cal solution sets are nonlocal in nature with one or two mordions, w; becomes zero at the critical valag, and stays at
eigenvalues of the stability matrix being zero. In the radiallyzero even foa,,>ay$,, implying the marginal stability of the
symmetric trap).? rotational symmetry becomes broken and symmetry-breaking state. It is consistent with the fact that
the resulting symmetry-breaking states are degenerate undefproj remains at zero fom,,>aj,. The point wherew,

the L2 symmetry operation. Thus lowest eigenvalues ofbecomes complex exactly coincides with the instability point
HP'! for the symmetry-preserving branch are threefold de-defined by our criterion yproj=0.

generate and become zero simultaneously at the instability Our study also revealed that two types of phase separated,
point. As expected for the symmetry-preserving solution, but symmetry-preserving solutions a,=9.6 nm, which
denoted by the open triangles, becomes negative prior to thead been believed to be a ground st core with sur-
onset of the instabilitysee Fig. 1 Indeed, the semipositive rounding Na atoms in Fig.(3)] and a metastable staffbla
definiteness oH is only sufficient condition for the stable core with surrounding Rb atoms in Fig(k], actually cor-
solution since it accounts for the stability with respect torespond to saddle points of the energy functiokalThe
arbitrary nonzero fluctuations including number of particles.\ ,proj for Figs. 2a) and 2b) states shows negative values,
To confirm this, the square of the Hartree-Bogoliubov fre-—0.702 and—1.557, respectively. Therefore, in this param-
quencwa for the symmetry-preserving solutions is plotted eter regime, the only stable state is the symmetry-breaking
with open circles in Fig. 1. In the symmetry-breaking param-state[see Fig. Zc)]. The energies for Figs.(@, 2(b), and
eter regimew, becomes purely imaginary. It implies that the 2(c) states are realized a&;@)/N;=9.556, E;@) /Ny
fluctuations of the condensates grow exponentially with=10.009, andE,,/N;=9.269, respectively. However, if
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FIG. 3. The value ofAproj for the symmetry-preserving and
symmetry-breaking branches as a functioragfin a cigarlike and
pancakelike trap.

we impose the constraint that requires the solutions to be

symmetry preserving, the states in Fig$a)2and Zb) be- _ FIG. 4. The pontour_densi_ty p'rofiles o_f the condensates and

come local minima in the constrained subspace of energ§i9envectorsy;(j=12) in a cigarlike trap ire=0 plane fora;,

functional E due to the symmetry-preserving constraint. In —4-7- (& Phase separated, but symmetry-preserving state,

the constrained subspace, Fighi2state can be considered as SYMMetry-breaking state along thaxis obtained by adding (ato

the metastable one that relaxes slowly to the Fig) &tate @. (a). and (b) are eigenvectors C(.)”eSpond'ng @ and (o),

by applying the symmetry-preserving perturbations. Therespgctlve!y. Here, the spatial coordinates are scaled by the har-

transition from Fig. 2o) to Fig. 2a) was pointed out by the monic oscillator length,.

nonlinear response analysis under radially symmetric off- ) . )

resonance modulations of the trapping poterjta. breaklng states retalnlng' a plgne .of symmetry that include
When the system is in the symmetry-breaking paramete}'® Z @xis, but whose orientation is random. On the other

regime, the ground state of 2BEC breaks a symmetry in th§and; the discrete-parity symmetry-breaking states in the

direction corresponding to the weakest trap frequency.c'gar!'ke trap.correspond to local minimums of the energy

Therefore, in a cigarlike cylindrically symmetric trap, the functionalE since ypro;>0. _

discretez-parity symmetnyil, is broken and two degenerate At the instability points, the eigenvectey, ., -o of zero

symmetry-breaking states that are mirror images of eackigenvalueiproj=0 determines the initial direction of a

other with respect to they plane appear. On the other hand, new bifurcating solution. In Figs.(4) and 4(4), we plot the

in a radially symmetric trap, the continuous rotational sym-symmetry-preserving states of each component and their

metry L2 is broken and an infinite number of degenerateeigenvectors in a cigarlike trap at the critical valag,

symmetry-breaking states, whose orientation of the symme=4.7. The symmetry-preserving state in Figa)dis a phase

try axis is random, appear. However, in the symmetry-separated one where Na atoms surround Rb core atoms. The

breaking parameter regime, the characteristic feature ofolid and dashed lines correspond to the condensate profile

A yeroj Shows a marked difference depending on whether thef Rb and Na, respectively. The density profiles of the eigen-

symmetry breaking is continuous or not. For the case of convectors for each component are composed &;

tinuous symmetry breaking,yproj remains at zero, showing =Ea(epr,Oj:0)a¢Ja (j=1,2), respectively. Sinca proj is

that it is neither in a stable state nor in an unstable state. londegenerate in the cigarlike trap, the density profiles of

implies that the symmetry-breaking state has an infinite numg, =0 in Fig. 4(d) determine a unique direction of newly

; ; H
ber of degeneracy due to the invariance of symmeiry breal"ﬁifurcating solution, which has symmetry breaking along the

ing with respect to a broken symmetry. In contrast, for thez axis. We confirmed that the direction of the symmetry

case of discrete symmetry breaking,ero; becomes positive breaking ata;,=4.8 as shown in Fig.(#) coincide with the
again in the symmetry-breaking parameter regime. In Figs 12 The direction of the eigen
0 -

3(@ and 3b), we plotted \yproj for both cases of the polarization direction Oé*H‘”‘”:

symmetry-preserving and symmetry-breaking solutions invector of Fig. 4b) also coincides with the direction of the
the pancakelike trap A;,=A;,=0.8 and A;,=1.0) and symmetry-breaking solution along tlzeaxis as can be seen
X y . z .

cigarlike trap @g,=A.,=1.0 andA;,=0.8), respectively. in Fig. 4(b). The other degenerate state of the symmetry-

The characteristic feature af,proj for the case of a pancake- brea_king SOIU“OU’ which i_s mirror image of Fi_g(ba, can b_e
like trap is the same as that for a radially symmetric trap()btamfad b_y adgimg the_ eigenvector of zero eigenvalue in the
except that the number of degeneracy\gfroj is two (see opposite direction to Fig. (@) as—8&, ‘ _
Fig. 1). In a pancakelike trap, the marginal stability is due to ~ Furthermoreg, ;o also plays an important role in con-

the existence of an infinite number of degenerate symmetrystructing new degenerate symmetry-breaking states for the

proj=0-
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shown in Fig. 5(8). The addition of Fig. 5(9 to Fig. 5a)

and the subsequent optimization gives the slightly
counterclockwise-rotated symmetry-breaking state in Fig.
5(b). The eigenvectors ol proj=0 corresponding to the
state in Fig. ®) become the one in Fig. 5(hwhich is
counterclockwise-rotated one as compared to that in Fig. 5
(@'). Next, addition of Fig. 5(b to Fig. 5b) produces the
further counterclockwise-rotated symmetry-breaking state of

Fig. 5(c).

IV. SUMMARY

We investigated the stability properties of the ground state
of 2BEC as a function of the interspecies interactions within
the framework of the Gross-Pitaevskii energy functional. The
stability criterion indicated by the sign ofyproj provides a
necessary and sufficient condition for the onset of the insta-
bility associated with the spontaneous spatial symmetry
breaking in the ground states of 2BEC. Also the characteris-
tic features of the spontaneous spatial symmetry breaking for
both continuous and discrete cases were investigated by ex-
amining the stability signature in the symmetry-breaking pa-
rameter regime.

In the present study, our main concern is about the stabil-
ity problems of the ground states of 2BEC associated with
the symmetry breaking. Recently, there have been several
theoretical efforts to understand the phase separation of
2BEC in the presence of vorticifyl8]. Our stability analysis
X X can be extended to a more complicated case of the phase
&eparation of 2BEC associated with a creation of quantized
eigenvector direction$y®(j=1,2) in a pancakelike trap ia=0 vortex or soliton. However, to investigate the stability and
plane fora;,=5.3. (8) Symmetry-breaking state along tkeaxis, dynam|c_s of 2BEC creating a vortex or soh_ton, the phase
(b) slightly counterclockwise-rotated symmetry-breaking state ob-CONtributions of the condensate wave function have to be
tained by adding (3 to (a), (c) further rotated symmetry-breaking €XPlicitely considered in the Gross-Pitaevskii energy func-
state obtained by adding (bto (b). (&), (b'), and (¢) are eigen-  tional. Here we used the fact that the ground state of 2BEC
vectors corresponding ), (b), and (c), respectively. Here, the Ccan be expressed by a real wave function with a constant
spatial coordinates are scaled by the harmonic oscillator ldagth  phase. So, our stability analysis is actually restricted to the

real stationary solutions of the Gross-Pitaevskii energy func-
case of the continuous symmetry breaking where the stabilit{ional.
is marginal Q@ uproj=0). In Fig. 5 we plot the condensate
wave functions and corresponding eigenvectors profigs
in the pancakelike trap at the symmetry-breaking parameter
regimea;,=5.2. The initial state in Fig.®) is a symmetry- We acknowledge that this work was supported in part by
breaking state along theaxis. It produces the eigenvectors KOSEF(Grant No. NLO699] and in part by BK21, School
of Ayproj=0 whose profiles are polarized along thaxis as  of Molecular Science.

FIG. 5. The contour density profiles of the condensates an

ACKNOWLEDGMENTS

[1] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E. [6] H. Pu and N.P. Bigelow, Phys. Rev. LeB0, 1130(1998.

Wieman, Phys. Rev. Let8, 586 (1997. [7] P. Ohberg and S. Stenholm, Phys. Re\6A 1272(1998.
[2] D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, and [8] D. Gordon and C.M. Savage, Phys. Re\58 1440(1998.
E.A. Cornell, Phys. Rev. LetB1, 1539(1998. [9] B.D. Esry, Phys. Rev. A8, R3399(1998; B.D. Esry and C.H.

[3] D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, Greenejbid. 59, 1457(1999.
H.J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Bit. [10] P. Ohberg, Phys. Rev. B9, 634 (1999; 61, 013601(2000.

2027(1998. [11] D. A. Wismer and R. Chattergyntroduction to Nonlinear Op-
[4] T.L. Ho and V.B. Shenoy, Phys. Rev. Lett7, 3276(1996. timization (Elsevier/North-Holland, New York/Amsterdam,
[5] B.D. Esry, C.H. Greene, J.P. Burke, and L. Bohn, Phys. Rev. 1978.

Lett. 78, 3594(1997). [12] C.K. Law, H. Pu, N.P. Bigelow, and J.H. Eberly, Phys. Rev.

066201-5



JAE GIL KIM AND EOK KYUN LEE PHYSICAL REVIEW E 65 066201

Lett. 79, 3105(1997). Burnett, Phys. Rev. A3, R1950(1966.
[13] R. Gilmore, Catastrophy Theory for Scientists and Engineers[17] J.G. Kim, K.K. Kang, B.S. Kim, and E.K. Lee, J. Phys.3B,
(Wiley, New York, 1981. 2559(2000.
[14] H. Pu and N.P. Bigelow, Phys. Rev. LeB0, 1134(1998. [18] S.T. Chui, V.N. Ryzhov, and E.E. Tareyeva, Phys. Re%3A
[15] F. Dalfovo and S. Stringari, Phys. Rev.58, 2477(1996. 023605(200)); D.M. Jezek, P. Capuzzi, and H.M. Cataldo,

[16] M. Edwards, R.J. Dodd, C.W. Clark, P.A. Ruprecht, and K. ibid. 64, 023605(2001).

066201-6



