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Characteristic features of symmetry breaking in two-component Bose-Einstein condensates
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We examine the stability properties of the ground state of two-component Bose-Einstein condensates as a
function of the interspecies interactions. A stability criterion is identified from the curvature matrix of the
Gross-Pitaevskii energy functional subject to the normalization conditions. By analyzing the stability signature,
the characteristic features of the spontaneous spatial symmetry breaking are verified in various types of traps.
The details of the differences between the continuous symmetry breaking and discrete symmetry breaking are
discussed.
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I. INTRODUCTION

Recently two-component Bose-Einstein condensa
~2BEC! have been realized by the systems of two differ
spin states of Rb in a magnetic trap@1,2# and, subsequently
Na in an optical trap@3#. Since then, a lot of theoretica
works have focused on how the presence of the interspe
interactions affects the stability of the ground state structu
and the excitation spectra of 2BEC. Different from the ca
of one-component BEC, 2BEC offers an opportunity to stu
a wide variety of interesting ground state structures such
phase separation and spontaneous spatial symmetry bre
due to an additional interspecies interaction. The phase s
ration of 2BEC has been first addressed in the Thomas-F
approximation@4# and studied more accurately within th
Hartree-Fock theory@5,6#. In these studies, the ground sta
of 2BEC has been assumed to retain the spherical trap s
metry, so the phase separation proceeds with the formin
a central core dominated by one species with an outer s
of the second species. On the other hand, the symme
breaking phase separation of 2BEC, in which the grou
state does not possess the symmetry of the trap potential
been recently demonstrated numerically by solving
coupled Gross-Pitaevskii equations~GPEs! @7#. When the
lowest excitation frequency becomes zero the symme
preserving ground state of 2BEC shows the onset of the
stability and a subsequent transition to the symme
breaking state@8,9#. More recently, the effects of the tra
geometry and finite temperature on the symmetry break
were also investigated@10#.

Until now most theoretical works on the spontaneous s
tial symmetry breaking had used the approach based on
coupled Gross-Pitaevskii equations obtained from the o
mum condition of the Gross-Pitaevskii energy function
~GPEF! @10,9#. However, it should be noted that the sol
tions of the GPEs do not always correspond to the lo
minimum of the GPEF since the set of solutions of t
coupled GPEs also includes maxima and saddle points o
energy functional@8#. Therefore, it is more natural to inves
tigate the stability properties of the ground state of 2B
starting from the Gross-Pitaevskii energy functional. In t
paper, we obtained the stationary solutions of the GPEF
applying the gradient projection method@11#, which mini-
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mizes the GPEF subject to constant particle number.
specific symmetry-breaking states were obtained by imp
ing an additional symmetry constraints on the ground s
wave function. After the determination of the stationary s
lutions of the GPEF, we investigated the stability propert
of the stationary solutions by computing the eigenvalues
the curvature matrix of the GPEF subject to the normali
tion constraints. We found that, as crossing the instabi
point, the lowest eigenvalue of the curvature matrix, wh
corresponds to our stability criterion, becomes negative
the symmetry-preserving states making the excitation
quency purely imaginary, whereas it remains at zero or p
tive for the symmetry-breaking states depending on the b
ken symmetry. In earlier works, the stability of the grou
state of 2BEC had been examined by computing the Hart
Bogoliubov frequencies@8# or by solving the time-dependen
GPEs under the modulation of the trap@12#. These stability
analyses can only tell whether the stationary solutions
stable or not with respect to the time evolution. However, o
stability criteria provide quantitative knowledge on the s
bility of the stationary solutions by identifying the saddl
ness of the stationary points on the GPEF surface.

The instabilities associated with the spontaneous spa
symmetry breaking can be classified according to the spa
symmetry of the resulting ground state. In general,
ground state of 2BEC breaks a symmetry in the direct
corresponding to the weakest trap frequency@9#. However,
the characteristic behaviors of the symmetry breaking sho
marked difference depending on whether the broken sym
try is continuous or not. The invariance of the symme
breaking under some continuous group produces a nonlo
ity in the critical solution set, which can be identified by th
degeneracy of zero eigenvalue of the stability matrix@13#.
These general behaviors accompanied with the instabil
in the symmetry breaking have not been studied in previ
works. Our results show that the continuous symme
breaking occurring in the radially symmetric trap or a pa
cakelike trap is always accompanied by the marginal sta
ity, which implies the existence of an infinite number of d
generate symmetry-breaking states. The marginal stab
can be noticed by occurrence of degenerate zero eigenva
in the curvature matrix at the instability points. On the oth
hand, the discrete symmetry breaking in the cigarlike t
©2002 The American Physical Society01-1
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proceeds by making the locally stable two degenerate st
that are mirror images of each other.

In Sec. II, the basic theory and detailed numerical me
ods are explained. We define a different stability criteri
from computation of the local curvatures of the Gros
Pitaevskii energy functional at the stationary points. In S
III, we present the numerical results of the symmetry bre
ing in various types of traps with a discussion of charac
istic features of the continuous and discrete symmetry bre
ing. Finally, the conclusions and the limitation of our meth
are summarized in Sec. IV.

II. THEORY AND NUMERICAL COMPUTATION

We start by considering the Gross-Pitaevskii energy fu
tional of 2BEC,

E@C1 ,C2#5E dr S N1C1* ĥ1C11lmN2C2* ĥ2C2

1
g11

2
N1

2uC1u41lm

g22

2
N2

2uC2u4

1g12N1N2uC1u2uC2u2D , ~1!

whereNj andC j are the number of atoms and the norm
ized wave function ofj th condensate, respectively. Here,lm
andlv are the ratio of the mass and the radial frequency
m1 /m2 and v1 /v2, respectively. By scaling the length an
energy with respect to the harmonic units ofl 15A\/m1v1
and \v1, respectively, the one-body operators a
given by ĥ j52¹2/21(Ajx

2 x21Ajy
2 y21Ajz

2 z2)/2, where
A2a5A1a /lmlv (a5x,y,z), Aj a being the anisotropic pa
rameter along the axisa for the speciesj. We approximate
the atomic interactions as the pseudopotentialgi j
52p\2ai j /mi j , wheremi j is the reduced mass defined b
1/mi j 51/mi11/mj , and ai j is the s-wave scattering length
between the speciesi and j. By same scaling,g11
54pa11/ l 1 , g2254pa22/ l 1, andg125(11lm)2pa12/ l 1.

At zero temperature the condensate wave functions ofj th
componentC j obeys the time-dependent Gross-Pitaevs
equations i ]C j /]t5dE/dC j* . Various numerical tech-
niques have been applied to determine the stationary s
tions of time-dependent GPEs@15–17#. Here we take a dif-
ferent approach by transforming the Hamiltonian system
the gradient systems whose dynamics is governed by
diffusion equations]C j /]t52dE/dC j* 5 f @C j #, wheret
is the imaginary timeit. Then f @C j # can be considered as
force that is derived from the negative gradient of the pot
tial functionE@C1 ,C2# with respect toC j* . Thus the mini-
mizing process ofE is equivalent to a process of findin
stationary states ofC j (t) and the stability properties of th
stationary states are determined from the local curvature
the GPEF subject to the normalization constraints. The c
densate wave functionC j are assumed to be real, since a
phase factor can be trivially eliminated. By expandingC j

with the harmonic oscillator basis asC j5(ca
j fa

j , the GPEF
reduces to a finite dimensional form as
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E@ca
1 ,cb

2 #5N1( ea
1 uca

1 u21lmN2( ea
2 uca

2 u2

1
g11

2
N1

2( ca
1cb

1cg
1cd

1Zabgd
1111

1lm

g22

2
N2

2( ca
2cb

2cg
2cd

2Zabgd
2222

1g12N1N2( ca
1cb

1cg
2cd

2Zabgd
1122 , ~2!

where ĥ jfa5ea
j fa and Zabgd

i jkl 5*drfa
i fb

j fg
kfd

l . The sta-
tionary states of Eq.~1! corresponding to optima of the
GPEF are obtained by minimizing Eq.~2! subject to the con-
straints of constant particle numbers, i.e., by the condit
Gj (ca

j )5(uca
j u22150. We used the gradient projectio

technique that minimizesE iteratively along the gradien
projected onto the linear subspace defined by the const
set @11#. The projection matrixP is defined asI2u1^ u1

2u2^ u2, where I is 2Nbasis32Nbasis identity matrix, and
u1 andu2 are normalized 2Nbasis dimensional column vec-
tors spanning the linear constraints subspace identica
(ca

1 ,0)T and (0,cb
2)T, respectively. Here^ means the

‘‘outer’’ product of two vectors. The gradient projectio
method forcesC j to converge to the lowest energy state.
find a specific symmetry-breaking state, we have to imp
an additional symmetry constraint onC j .

The stability of stationary states can be identified by e
amining the eigenvalues of the curvature matrix of t
Gross-Pitaevskii energy functional. The curvature matrix
obtained by projecting the Hessian matrix of the GPEF
the subspace defined by the constraint set, i.e.,Hpro j

5PTHP, H5]2E/]ca
i ]cb

j . Notice that the normalization
constraintsGj restrict the fluctuations ofca

j around the sta-
tionary points. The normal modes ofHpro j are decomposed
into two subspaces. One subspace corresponds to the
straint space composed ofu1 andu2, and the other subspac
corresponds to the orthogonal subspace whose normal m
are orthogonal to bothu1 andu2. The onset of the instability
and the transition to the symmetry-breaking states oc
when the lowest eigenvalue ofHpro j in the orthogonal sub-
space becomes zero. At the instability point, the direction
the symmetry-breaking solution is determined uniquely
the eigenvector with zero eigenvalue. Our stability criteri
also provides the degree of the stability of the station
solutions by identifying a saddleness of the stationary po
on the GPEF surface. Indeed, we found that the symme
preserving and symmetry-breaking states correspond t
saddle and 0 saddle, respectively, in the symmetry-brea
parameter regime. Here,i saddle means a saddle point of th
GPEF surface, which hasi negative eigenvalues. The numb
of degeneracy of eigenvalues, which become zero at the
stability point depends on the symmetry of the trap. It
threefold degenerate for a radially symmetric trap, and tw
fold degenerate for a pancakelike trap. Finally, for a cigarl
trap, it is nondegenerate.
1-2
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CHARACTERISTIC FEATURES OF SYMMETRY . . . PHYSICAL REVIEW E65 066201
III. RESULTS AND DISCUSSIONS

We first carried out calculations with the same parame
set as used in the work of Pu and Bigelow@14# for compari-
son. We assumed Rb as component 1 and Na as compon
with intraspecies scattering lengths of 6 nm and 3 nm,
spectively. The radial trap frequencies were taken asv1
52p3160 Hz andv252p3310 Hz. In Fig. 1 the lowes
eigenvalue ofHpro j (lHpro j) and H (lH) for the case of a
radially symmetric trap were plotted for the symmetr
preserving and symmetry-breaking solutions, respectively
a function of the interspecies scattering lengtha12 for fixed
N15N25103. The closed and open squares representlHpro j

corresponding to the symmetry-breaking states
symmetry-preserving states, respectively. Notice that, asa12
crosses the instability point (a1255.0), lHpro j becomes
negative for the symmetry-preserving states, whereas it
mains at zero for the symmetry-breaking states. This sh
that the occurrence of the instability of the symmet
preserving state is always accompanied with the symme
breaking state that is marginally stable. If the symme
breaking is invariant under some continuous group, the c
cal solution sets are nonlocal in nature with one or two m
eigenvalues of the stability matrix being zero. In the radia
symmetric trap,L2 rotational symmetry becomes broken a
the resulting symmetry-breaking states are degenerate u
the L2 symmetry operation. Thus lowest eigenvalues
Hpro j for the symmetry-preserving branch are threefold
generate and become zero simultaneously at the instab
point. As expected,lH for the symmetry-preserving solution
denoted by the open triangles, becomes negative prior to
onset of the instability~see Fig. 1!. Indeed, the semipositive
definiteness ofH is only sufficient condition for the stabl
solution since it accounts for the stability with respect
arbitrary nonzero fluctuations including number of particl
To confirm this, the square of the Hartree-Bogoliubov f
quencyv1

2 for the symmetry-preserving solutions is plotte
with open circles in Fig. 1. In the symmetry-breaking para
eter regime,v1 becomes purely imaginary. It implies that th
fluctuations of the condensates grow exponentially w

FIG. 1. The values oflHpro j, lH , andv1
2 vs interspecies cou

pling constant a12 in a radially symmetric trap. Symmetry
preserving branch and symmetry-breaking branch are abbrev
by SP and SB, respectively.
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time. On the other hand, for the symmetry-breaking so
tions, v1 becomes zero at the critical valuea12

c and stays at
zero even fora12.a12

c , implying the marginal stability of the
symmetry-breaking state. It is consistent with the fact t
lHpro j remains at zero fora12.a12

c . The point wherev1

becomes complex exactly coincides with the instability po
defined by our criterionlHpro j50.

Our study also revealed that two types of phase separa
but symmetry-preserving solutions ata1259.6 nm, which
had been believed to be a ground state@Rb core with sur-
rounding Na atoms in Fig. 2~a!# and a metastable state@Na
core with surrounding Rb atoms in Fig. 2~b!#, actually cor-
respond to saddle points of the energy functionalE. The
lHpro j for Figs. 2~a! and 2~b! states shows negative values
20.702 and21.557, respectively. Therefore, in this param
eter regime, the only stable state is the symmetry-break
state@see Fig. 2~c!#. The energies for Figs. 2~a!, 2~b!, and
2~c! states are realized asE2(a) /N159.556, E2(b) /N1
510.009, andE2(c) /N159.269, respectively. However, i

ed

FIG. 2. The spatial density profiles of the phase separated,
symmetry-preserving state atz50 plane Rb core with surrounding
Na atoms~a!, Na core with surrounding Rb atoms~b!. The spatial
density profile of the symmetry-breaking state~c!. Here, a12

59.6 nm and the spatial coordinates are scaled by the harm
oscillator lengthl 1.
1-3



b

rg
In
s

h

of

et
th
c
e

te
ac
d,
m
te

m
ry

th
o

e.
m
a

th

ig

i

-
a

to
tr

de
er
e
gy

heir

. The
ofile
en-

of
y
he
try

e
n
ry-

the

-
the

d

and

har-

JAE GIL KIM AND EOK KYUN LEE PHYSICAL REVIEW E 65 066201
we impose the constraint that requires the solutions to
symmetry preserving, the states in Figs. 2~a! and 2~b! be-
come local minima in the constrained subspace of ene
functional E due to the symmetry-preserving constraint.
the constrained subspace, Fig. 2~b! state can be considered a
the metastable one that relaxes slowly to the Fig. 2~a! state
by applying the symmetry-preserving perturbations. T
transition from Fig. 2~b! to Fig. 2~a! was pointed out by the
nonlinear response analysis under radially symmetric
resonance modulations of the trapping potential@14#.

When the system is in the symmetry-breaking param
regime, the ground state of 2BEC breaks a symmetry in
direction corresponding to the weakest trap frequen
Therefore, in a cigarlike cylindrically symmetric trap, th
discretez-parity symmetryPz is broken and two degenera
symmetry-breaking states that are mirror images of e
other with respect to thexy plane appear. On the other han
in a radially symmetric trap, the continuous rotational sy
metry L2 is broken and an infinite number of degenera
symmetry-breaking states, whose orientation of the sym
try axis is random, appear. However, in the symmet
breaking parameter regime, the characteristic feature
lHpro j shows a marked difference depending on whether
symmetry breaking is continuous or not. For the case of c
tinuous symmetry breaking,lHpro j remains at zero, showing
that it is neither in a stable state nor in an unstable stat
implies that the symmetry-breaking state has an infinite nu
ber of degeneracy due to the invariance of symmetry bre
ing with respect to a broken symmetry. In contrast, for
case of discrete symmetry breaking,lHpro j becomes positive
again in the symmetry-breaking parameter regime. In F
3~a! and 3~b!, we plotted lHpro j for both cases of the
symmetry-preserving and symmetry-breaking solutions
the pancakelike trap (A1x5A1y50.8 and A1z51.0) and
cigarlike trap (A1x5A1y51.0 andA1z50.8), respectively.
The characteristic feature oflHpro j for the case of a pancake
like trap is the same as that for a radially symmetric tr
except that the number of degeneracy oflHpro j is two ~see
Fig. 1!. In a pancakelike trap, the marginal stability is due
the existence of an infinite number of degenerate symme

FIG. 3. The value oflHpro j for the symmetry-preserving an
symmetry-breaking branches as a function ofa12 in a cigarlike and
pancakelike trap.
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breaking states retaining a plane of symmetry that inclu
the z axis, but whose orientation is random. On the oth
hand, the discretez-parity symmetry-breaking states in th
cigarlike trap correspond to local minimums of the ener
functionalE sincelHpro j.0.

At the instability points, the eigenvectorelHpro j50 of zero

eigenvaluelHpro j50 determines the initial direction of a
new bifurcating solution. In Figs. 4~a! and 4(a8), we plot the
symmetry-preserving states of each component and t
eigenvectors in a cigarlike trap at the critical valuea12

c

54.7. The symmetry-preserving state in Fig. 4~a! is a phase
separated one where Na atoms surround Rb core atoms
solid and dashed lines correspond to the condensate pr
of Rb and Na, respectively. The density profiles of the eig
vectors for each component are composed ofdc j

5(a(elHpro j50)afa
j ( j 51,2), respectively. SincelHpro j is

nondegenerate in the cigarlike trap, the density profiles
elHpro j50 in Fig. 4(a8) determine a unique direction of newl
bifurcating solution, which has symmetry breaking along t
z axis. We confirmed that the direction of the symme
breaking ata1254.8 as shown in Fig. 4~b! coincide with the
polarization direction ofelHpro j50. The direction of the eigen-
vector of Fig. 4~b! also coincides with the direction of th
symmetry-breaking solution along thez axis as can be see
in Fig. 4(b8). The other degenerate state of the symmet
breaking solution, which is mirror image of Fig. 4~b!, can be
obtained by adding the eigenvector of zero eigenvalue in
opposite direction to Fig. 4~a! as2elHpro j50.

Furthermore,elHpro j50 also plays an important role in con
structing new degenerate symmetry-breaking states for

FIG. 4. The contour density profiles of the condensates
eigenvectorsdc j ( j 51,2) in a cigarlike trap inz50 plane fora12

54.7. ~a! Phase separated, but symmetry-preserving state,~b!
symmetry-breaking state along thez axis obtained by adding (a8) to
~a!. (a8) and (b8) are eigenvectors corresponding to~a! and ~b!,
respectively. Here, the spatial coordinates are scaled by the
monic oscillator lengthl 1.
1-4
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CHARACTERISTIC FEATURES OF SYMMETRY . . . PHYSICAL REVIEW E65 066201
case of the continuous symmetry breaking where the stab
is marginal (lHpro j50). In Fig. 5 we plot the condensat
wave functions and corresponding eigenvectors profilesdc j
in the pancakelike trap at the symmetry-breaking param
regimea1255.2. The initial state in Fig. 5~a! is a symmetry-
breaking state along thex axis. It produces the eigenvecto
of lHpro j50 whose profiles are polarized along they axis as

FIG. 5. The contour density profiles of the condensates
eigenvector directionsdc j

0( j 51,2) in a pancakelike trap inz50
plane fora1255.3. ~a! Symmetry-breaking state along thex axis,
~b! slightly counterclockwise-rotated symmetry-breaking state
tained by adding (a8) to ~a!, ~c! further rotated symmetry-breakin
state obtained by adding (b8) to ~b!. (a8), (b8), and (c8) are eigen-
vectors corresponding to~a!, ~b!, and ~c!, respectively. Here, the
spatial coordinates are scaled by the harmonic oscillator lengthl 1.
.

nd

e,

e

06620
ty

er

shown in Fig. 5(a8). The addition of Fig. 5(a8) to Fig. 5~a!
and the subsequent optimization gives the sligh
counterclockwise-rotated symmetry-breaking state in F
5~b!. The eigenvectors oflHpro j50 corresponding to the
state in Fig. 5~b! become the one in Fig. 5(b8),which is
counterclockwise-rotated one as compared to that in Fig
(a8). Next, addition of Fig. 5(b8) to Fig. 5~b! produces the
further counterclockwise-rotated symmetry-breaking state
Fig. 5~c!.

IV. SUMMARY

We investigated the stability properties of the ground st
of 2BEC as a function of the interspecies interactions wit
the framework of the Gross-Pitaevskii energy functional. T
stability criterion indicated by the sign oflHpro j provides a
necessary and sufficient condition for the onset of the in
bility associated with the spontaneous spatial symme
breaking in the ground states of 2BEC. Also the characte
tic features of the spontaneous spatial symmetry breaking
both continuous and discrete cases were investigated by
amining the stability signature in the symmetry-breaking p
rameter regime.

In the present study, our main concern is about the sta
ity problems of the ground states of 2BEC associated w
the symmetry breaking. Recently, there have been sev
theoretical efforts to understand the phase separation
2BEC in the presence of vorticity@18#. Our stability analysis
can be extended to a more complicated case of the p
separation of 2BEC associated with a creation of quanti
vortex or soliton. However, to investigate the stability a
dynamics of 2BEC creating a vortex or soliton, the pha
contributions of the condensate wave function have to
explicitely considered in the Gross-Pitaevskii energy fun
tional. Here we used the fact that the ground state of 2B
can be expressed by a real wave function with a cons
phase. So, our stability analysis is actually restricted to
real stationary solutions of the Gross-Pitaevskii energy fu
tional.

ACKNOWLEDGMENTS

We acknowledge that this work was supported in part
KOSEF~Grant No. NL06990!, and in part by BK21, Schoo
of Molecular Science.

d

-

,

v.
@1# C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E
Wieman, Phys. Rev. Lett.78, 586 ~1997!.

@2# D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, a
E.A. Cornell, Phys. Rev. Lett.81, 1539~1998!.

@3# D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouy
H.J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett.80,
2027 ~1998!.

@4# T.L. Ho and V.B. Shenoy, Phys. Rev. Lett.77, 3276~1996!.
@5# B.D. Esry, C.H. Greene, J.P. Burke, and L. Bohn, Phys. R

Lett. 78, 3594~1997!.

v.

@6# H. Pu and N.P. Bigelow, Phys. Rev. Lett.80, 1130~1998!.
@7# P. Ohberg and S. Stenholm, Phys. Rev. A57, 1272~1998!.
@8# D. Gordon and C.M. Savage, Phys. Rev. A58, 1440~1998!.
@9# B.D. Esry, Phys. Rev. A58, R3399~1998!; B.D. Esry and C.H.

Greene,ibid. 59, 1457~1999!.
@10# P. Ohberg, Phys. Rev. A59, 634 ~1999!; 61, 013601~2000!.
@11# D. A. Wismer and R. Chattergy,Introduction to Nonlinear Op-

timization ~Elsevier/North-Holland, New York/Amsterdam
1978!.

@12# C.K. Law, H. Pu, N.P. Bigelow, and J.H. Eberly, Phys. Re
1-5



rs

K
o,

JAE GIL KIM AND EOK KYUN LEE PHYSICAL REVIEW E 65 066201
Lett. 79, 3105~1997!.
@13# R. Gilmore,Catastrophy Theory for Scientists and Enginee

~Wiley, New York, 1981!.
@14# H. Pu and N.P. Bigelow, Phys. Rev. Lett.80, 1134~1998!.
@15# F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477~1996!.
@16# M. Edwards, R.J. Dodd, C.W. Clark, P.A. Ruprecht, and
06620
.

Burnett, Phys. Rev. A53, R1950~1966!.
@17# J.G. Kim, K.K. Kang, B.S. Kim, and E.K. Lee, J. Phys. B33,

2559 ~2000!.
@18# S.T. Chui, V.N. Ryzhov, and E.E. Tareyeva, Phys. Rev. A63,

023605 ~2001!; D.M. Jezek, P. Capuzzi, and H.M. Catald
ibid. 64, 023605~2001!.
1-6


